Opl 0.8

Latest version

Here you can download file Open Ps2 Loader 0.8. 2shared gives you an excellent opportunity to store your files here and share them with others. Join our community just now to flow with the file Open Ps2 Loader 0.8 and make our shared file collection even more complete and exciting. 70000 to 90000 OPL - 0.8% Daily Rewards (Max - 245%) 90000 and above - 0.9% Daily Rewards (Max - 270%) Referral. You need to stake at least 50 OPL to active your referral link. If you have = 10 direct referrals, you will earn 2% ref commission from the first level. If you have 10 and = 50 direct referrals, you will earn 3% ref commission from.

0.8

Released:

A Python interface to OPL.

Project description

Welcome to the IBM® OPL connector for Python.Licensed under the Apache License v2.0.

With this library, you can quickly and easily add the power of optimization toyour Python application. You can model your problems by using the OPL language and IDE, and integrate it in Python via Python/pandas/sql alchemy inputs/outputs.

Solving with CPLEX requires that IBM® ILOG CPLEX Optimization Studio V12.8.0 and up is installed on your machine.

Get the examples

  • Examples.

Get your IBM® ILOG CPLEX Optimization Studio edition

  • You can get a free Community Editionof CPLEX Optimization Studio, with limited solving capabilities in term of problem size.
  • Faculty members, research professionals at accredited institutions can get access to an unlimited version of CPLEX through theIBM® Academic Initiative.

License

This library is delivered under the Apache License Version 2.0, January 2004 (see LICENSE.txt).

Starting point

Opl 0.8

The API is very compact and simple.You must have the OPL binaries in your PATH/LD_LIBRARY_PATH orDYLD_LIBRARY_PATH, depending on your platform. They are located in<cplex_studio_dir>/opl/bin/<platform> where:

Opl 0.8
  • cplex_studio_dir is the installation directory of CPLEX 12.8
  • platform is your plaform (OPL nomenclature, that is x64_win64, x86-64_linux or x86-64_osx)

Here is small sumup of the capabilities:

  • Inputs can be tuple lists, panda’s dataframe, sql alchemy fetch statements.
  • Generate, solve and get output tuplesets as panda’s dataframe
  • Get the CPLEX problem statistics and quality metrics for the solution
  • Convert all integer variables to floating point variables and vice-versa.
  • Run the conflict/relaxation mechanism.
  • Call the ‘RunSeed’ diagnosis for CPLEX/CPO based problems.

Each of these features are demonstrated with simple examples.

Here is a small example to start working with the API:

Release historyRelease notifications RSS feed

12.10.0.26

12.10.0.24

12.9.0.16

12.9.0.15

12.9.0.14

12.8.0.11

12.8.0.8

12.8.0.7

12.8.0.4

12.8.0.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for doopl, version 12.10.0.26
Filename, sizeFile typePython versionUpload dateHashes
Filename, size doopl-12.10.0.26-cp27-cp27m-macosx_10_6_x86_64.whl (303.5 kB) File type Wheel Python version cp27 Upload dateHashes
Filename, size doopl-12.10.0.26-cp27-cp27m-manylinux1_x86_64.whl (295.7 kB) File type Wheel Python version cp27 Upload dateHashes
Filename, size doopl-12.10.0.26-cp27-cp27mu-manylinux1_x86_64.whl (295.7 kB) File type Wheel Python version cp27 Upload dateHashes
Filename, size doopl-12.10.0.26-cp27-cp27m-win_amd64.whl (25.0 MB) File type Wheel Python version cp27 Upload dateHashes
Filename, size doopl-12.10.0.26-cp35-cp35m-macosx_10_6_x86_64.whl (302.4 kB) File type Wheel Python version cp35 Upload dateHashes
Filename, size doopl-12.10.0.26-cp35-cp35m-manylinux1_x86_64.whl (293.9 kB) File type Wheel Python version cp35 Upload dateHashes
Filename, size doopl-12.10.0.26-cp35-cp35m-win_amd64.whl (25.0 MB) File type Wheel Python version cp35 Upload dateHashes
Filename, size doopl-12.10.0.26-cp36-cp36m-macosx_10_6_x86_64.whl (302.4 kB) File type Wheel Python version cp36 Upload dateHashes
Filename, size doopl-12.10.0.26-cp36-cp36m-manylinux1_x86_64.whl (293.9 kB) File type Wheel Python version cp36 Upload dateHashes
Filename, size doopl-12.10.0.26-cp36-cp36m-win_amd64.whl (25.0 MB) File type Wheel Python version cp36 Upload dateHashes
Filename, size doopl-12.10.0.26-cp37-cp37m-macosx_10_6_x86_64.whl (302.4 kB) File type Wheel Python version cp37 Upload dateHashes
Filename, size doopl-12.10.0.26-cp37-cp37m-manylinux1_x86_64.whl (293.9 kB) File type Wheel Python version cp37 Upload dateHashes
Filename, size doopl-12.10.0.26-cp37-cp37m-win_amd64.whl (25.0 MB) File type Wheel Python version cp37 Upload dateHashes
Close

Hashes for doopl-12.10.0.26-cp27-cp27m-macosx_10_6_x86_64.whl

Hashes for doopl-12.10.0.26-cp27-cp27m-macosx_10_6_x86_64.whl
AlgorithmHash digest
SHA256998fe1d082b7274502be22c0d83b894507bd407f0e2132da71c8a9b61f40d772
MD5ac57dee95d2264abb1a25ebe5b026d74
BLAKE2-256a137263b7f4bfd9cebd14f1616f32602077f2934941e65f9284a66ffa028d362
Close

Hashes for doopl-12.10.0.26-cp27-cp27m-manylinux1_x86_64.whl

Hashes for doopl-12.10.0.26-cp27-cp27m-manylinux1_x86_64.whl
AlgorithmHash digest
SHA2569e03144a4f36354b42e9bd1f0698d6c99891ce996b4f62432828f37c5416ccfa
MD59f47e5896005fd9bf2f15c3460b6195c
BLAKE2-25653db744d91fd4c5cf5c0a8366d9c8c94d0fb328f64eb48e0be82bba990352cc8
Close

Hashes for doopl-12.10.0.26-cp27-cp27mu-manylinux1_x86_64.whl

Hashes for doopl-12.10.0.26-cp27-cp27mu-manylinux1_x86_64.whl
AlgorithmHash digest
SHA256bd14493c748f249cce325eaa7ce63314a517c516ab920ba851cfc72c57893a6a
MD562447244d7b43e7513982381b13ecefb
BLAKE2-256f753e135d2a2bea412d161ea19a63959a13c569ee323ecd96cea2abc03e4beac
Close

Hashes for doopl-12.10.0.26-cp27-cp27m-win_amd64.whl

Hashes for doopl-12.10.0.26-cp27-cp27m-win_amd64.whl
AlgorithmHash digest
SHA25614a01a1039cdd49ffb58e4b671ddcd9c417305e57330078a7aacb5b4008e96ac
MD5fb7444d7531c8c2d7c55783c2ac03241
BLAKE2-256cad7682eaa674e7fbc1b57360516262f66c44bb2e237b26b6d911e9b6611ca65
Close

Hashes for doopl-12.10.0.26-cp35-cp35m-macosx_10_6_x86_64.whl

Opl 0.8
Hashes for doopl-12.10.0.26-cp35-cp35m-macosx_10_6_x86_64.whl
AlgorithmHash digest
SHA256153c7630e7315c66616415833f5e0b946e996242311963e50a29dead5594cac2
MD5e8ee86f3a6a8c24acd9149458ede7862
BLAKE2-256bf0dc6460d70117b0a25f3d9430a98a64a13fe170ce667f348d2fa1ab34bfc64
Close

Hashes for doopl-12.10.0.26-cp35-cp35m-manylinux1_x86_64.whl

Hashes for doopl-12.10.0.26-cp35-cp35m-manylinux1_x86_64.whl
AlgorithmHash digest
SHA256ea387add3660d20fa64b93e61f07e3c75e530bf414aa3f4b9fdd79284fd40b6d
MD57abc467acb5ba125c44182580d8a60f0
BLAKE2-2566e471822b38f21d66afd4049fd856d23ab547002728a70792c55d562a384ff2d
Close

Hashes for doopl-12.10.0.26-cp35-cp35m-win_amd64.whl

Hashes for doopl-12.10.0.26-cp35-cp35m-win_amd64.whl
AlgorithmHash digest
SHA256ae5438a658d8dc6f01af31e92ac508842f9b0a97d85f12f318c883c34d3365f1
MD5de52796dafe7ab7910908bab037ab482
BLAKE2-25612e15d0f410a8bb20afde9378d77fc2d547e4b68d6b4c6b22128b9d65b5e8aae
Close

Hashes for doopl-12.10.0.26-cp36-cp36m-macosx_10_6_x86_64.whl

Hashes for doopl-12.10.0.26-cp36-cp36m-macosx_10_6_x86_64.whl
AlgorithmHash digest
SHA256583fbe96792918d48d05ec6a6402c62b76a26986187f7ba98942c8b20cd39b46
MD55a31335cfe28d9964c190ef4572e8212
BLAKE2-2561282d2d0500eaa08ace119e042332a96f89d16fa47f9eb920373d740394d7dfd
Close

Hashes for doopl-12.10.0.26-cp36-cp36m-manylinux1_x86_64.whl

Hashes for doopl-12.10.0.26-cp36-cp36m-manylinux1_x86_64.whl
AlgorithmHash digest
SHA25690b0d036eac41d570dd9e999c81219db7dbf202e71517174bfa07824b93512dd
MD5346bfeae1dbe75acb0c0118c25696db0
BLAKE2-2569fb1abd907d8de8ac5f145deb4d9e591de469f9c09dfd5c2ec4069e5cf48e033
Close

Hashes for doopl-12.10.0.26-cp36-cp36m-win_amd64.whl

Hashes for doopl-12.10.0.26-cp36-cp36m-win_amd64.whl
AlgorithmHash digest
SHA25698d4aa40569d6b6b750f9bdad1d4b36c36840172f14ad2ed786f6cb9b9b92c06
MD59e83a48ea994b66e280ade0d3aca2911
BLAKE2-2569cc15147fa7b6b9b86c4d9f4bfa9bfc445aa3d65d83b83f4848220fc683a9163
Close

Hashes for doopl-12.10.0.26-cp37-cp37m-macosx_10_6_x86_64.whl

Hashes for doopl-12.10.0.26-cp37-cp37m-macosx_10_6_x86_64.whl
AlgorithmHash digest
SHA256e3940aff566cdf0f1da306d4f6c47d67c1b80954ffd09287fe4c60daa69fa462
MD58ad0856281ce4e9ef4653c9dc58e69eb
BLAKE2-256deca7b0c2be5681a17fc912cd2da3a319c953decde4d70745ddefd32cecdf7e0
Close

Opl 0.8 Themes

Hashes for doopl-12.10.0.26-cp37-cp37m-manylinux1_x86_64.whl

Hashes for doopl-12.10.0.26-cp37-cp37m-manylinux1_x86_64.whl
AlgorithmHash digest
SHA2561c80eb5d9ce425b0055106f75f6cb31f614a07cb996c29a501832812ea5cb818
MD51331ef19bd80fbd6538c243fb7c96cde
BLAKE2-256a0601bb7da12592c890435fe1408545677ce713b1521e4126078addb4cad7af4
Close

Hashes for doopl-12.10.0.26-cp37-cp37m-win_amd64.whl

Opl 0.8 Baixar

Hashes for doopl-12.10.0.26-cp37-cp37m-win_amd64.whl
AlgorithmHash digest
SHA2560d0f486092740b14ab392c5faf2fdb509799e794ddb51a9b6e8da8c6b264666a
MD58391591296526e0ffb99a33ef0c01017
BLAKE2-25648a24319f58d5448a4d8d8105eff99485fe168bd0c7fddb53b62c168a6fb407a